Stochastic Collocation Algorithms Using `1-minimization
نویسندگان
چکیده
The idea of `1-minimization is the basis of the widely adopted compressive sensing method for function approximation. In this paper, we extend its application to high-dimensional stochastic collocation methods. To facilitate practical implementation, we employ orthogonal polynomials, particularly Legendre polynomials, as basis functions, and focus on the cases where the dimensionality is high such that one can not afford to construct high-degree polynomial approximations. We provide theoretical analysis on the validity of the approach. The analysis also suggests that using the Chebyshev measure to precondition the `1-minimization, which has been shown to be numerically advantageous in one dimension in the literature, may in fact become less efficient in high dimensions. Numerical tests are provided to examine the performance of the methods and validate the theoretical findings.
منابع مشابه
Stochastic Collocation Methods via ℓ1 Minimization Using Randomized Quadratures
In this work, we discuss the problem of approximating a multivariate function by polynomials via `1 minimization method, using a random chosen sub-grid of the corresponding tensor grid of Gaussian points. The independent variables of the function are assumed to be random variables, and thus, the framework provides a non-intrusive way to construct the generalized polynomial chaos expansions, ste...
متن کاملStochastic Collocation for Optimal Control Problems with Stochastic PDE Constraints
We discuss the use of stochastic collocation for the solution of optimal control problems which are constrained by stochastic partial differential equations (SPDE). Thereby the constraining SPDE depends on data which is not deterministic but random. Assuming a deterministic control, randomness within the states of the input data will propagate to the states of the system. For the solution of SP...
متن کاملFast Algorithms for the Solution of Stochastic Partial Differential Equations
Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the s...
متن کاملA Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data
This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...
متن کاملA Big-Data Approach to Handle Many Process Variations: Tensor Recovery and Applications
Fabrication process variations are a major source of yield degradation in the nano-scale design of integrated circuits (IC), microelectromechanical systems (MEMS) and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, these algorithms suffer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012